Attention NAE Members
Starting June 30, 2023, login credentials have changed for improved security. For technical assistance, please contact us at 866-291-3932 or helpdesk@nas.edu. For all other inquiries, please contact our Membership Office at 202-334-2198 or NAEMember@nae.edu.
Click here to login if you're an NAE Member
Recover Your Account Information
This is the 21st Volume in the series Memorial Tributes compiled by the National Academy of Engineering as a personal remembrance of the lives and outstanding achievements of its members and international members. These volumes are intended to stand as an enduring record of the many contributions of engineers and engineering to the benefit of humankind. In most cases, the authors of the tributes are contemporaries or colleagues who had personal knowledge of the interests and the engineering accomplishments of the deceased. Through its members and international members, the Academy carries...
This is the 21st Volume in the series Memorial Tributes compiled by the National Academy of Engineering as a personal remembrance of the lives and outstanding achievements of its members and international members. These volumes are intended to stand as an enduring record of the many contributions of engineers and engineering to the benefit of humankind. In most cases, the authors of the tributes are contemporaries or colleagues who had personal knowledge of the interests and the engineering accomplishments of the deceased. Through its members and international members, the Academy carries out the responsibilities for which it was established in 1964.
Under the charter of the National Academy of Sciences, the National Academy of Engineering was formed as a parallel organization of outstanding engineers. Members are elected on the basis of significant contributions to engineering theory and practice and to the literature of engineering or on the basis of demonstrated unusual accomplishments in the pioneering of new and developing fields of technology. The National Academies share a responsibility to advise the federal government on matters of science and technology. The expertise and credibility that the National Academy of Engineering brings to that task stem directly from the abilities, interests, and achievements of our members and international members, our colleagues and friends, whose special gifts we remember in this book.
Results Found
BY JOAN F. BRENNECKE
ROGER ANTHONY SCHMITZ, Keating-Crawford Professor Emeritus at the University of Notre Dame, died October 11, 2013, at the age of 78, after having been diagnosed with ALS earlier that year. Roger was born in Carlyle, a small town in Illinois, on October 22, 1934. After high school he went to work as a stock clerk in a local store and then started his own ice service. His entrepreneurial activities were soon interrupted when he was drafted into the US Army in November 1953 during the Korean War (although he spent most of his service in Germany).
When he was discharged in October 1955, Roger enrolled in the University of Illinois at Urbana-Champaign (UIUC) on the GI Bill, earning his BS in chemical engineering in 1959. Influenced by his undergraduate research with John Quinn, he went on to pursue his PhD in chemical engineering at the University of Minnesota, where he worked with Neal Amundson. Ever in a hurry, he defended his PhD after just three years, in 1962, and joined the UIUC chemical engineering faculty that same year.
Roger’s major research contributions were in the experimental observation of complex behavior in chemical reactions and catalysis. His work with Amundson involved theoretical predictions of mathematically very rich steady-state and dynamic behavior in chemical reactors. Roger and his 29 PhD and 37 MS students were the first to verify theoretical predictions of such complex behavior experimentally. He was the first to show multiple steady states in a stirred tank reactor and to demonstrate chaos in chemical reactions. His demonstration that multiplicities and instabilities in chemically reacting systems were real issues, not just theoretical ones, is the core of Roger’s research contributions.
Major awards for his research include a Guggenheim Fellowship (1968–1969), which he spent at CalTech and the University of Southern California; the Allan P. Colburn Award for Excellence in Publication by a Young Member of the Institute (1970) and the R.H. Wilhelm Award in Chemical Reaction Engineering (1981), both from the American Institute of Chemical Engineers; and, of course, election to the National Academy of Engineering (1984).
But his contributions to engineering go well beyond his research. In 1979 he moved to the University of Notre Dame as chair of the Department of Chemical Engineering and ushered in a fundamental transformation of the department. After only two years he became dean of the College of Engineering, where that same transformative energy impacted the rest of the college. And in 1987 he became vice president and associate provost of the university.
Roger was an early adopter of computing in chemical engineering, both for research and for undergraduate instruction, at a time when you had to do everything yourself, including writing code in machine language. He received the American Society for Engineering Education George Westinghouse Award in 1977 for the establishment of a computerized dynamics and digital control laboratory at the University of Illinois, the first of its kind nationally for undergraduates in chemical engineering.
At Notre Dame, he started a large-scale deployment of campuswide computing resources in 1985, providing state-ofthe-art Unix workstations for engineering and science faculty and students, graduate and undergraduate alike. This created some of the best computing infrastructure in the nation, as well as a culture change in the way many classes were taught.
In 1995 Roger returned to the department to teach a new course, for which he wrote an electronic textbook titled Ecological Models and Dynamics: An Interactive Textbook (Garland Science, 2008). He had always seen the mathematical connection between dynamic behavior in a diverse range of natural phenomena, from chemical reactions to heart fibrillations and predator-prey behavior. This course, still taught at Notre Dame, is an elegant exposition of that understanding.
Roger was an avid athlete. If he hadn’t been a chemical engineer, he surely would have been a baseball player. He was also a formidable opponent on the handball court and he loved running. But his pride and joy was his family. He married Ruth Kuhl in 1957 when he was an undergraduate at Illinois, and they had three wonderful daughters and seven grandchildren. Nothing was better than when he could combine his family with his passion for running, as in 2005, when three generations of his family placed first in their divisions at the annual Sunburst race in South Bend.
It is impossible to describe Roger’s career and contributions to our profession without the one word that describes him best—integrity. Scientific integrity: Roger designed and performed the most elegant experiments with care and curiosity. Professional integrity: Roger treated everyone with the utmost in honesty and fairness. He was the one that everyone went to for advice and counsel. Above all else, Roger could be trusted to tell you the truth. Personal integrity: Roger was the model of decency. This showed through his family and in all his interpersonal relationships. He battled ALS with courage, dignity, and humor. A visit with Ruth and Roger in his final weeks was nothing less than inspiring.
Roger A. Schmitz is the experimental verification of the theoretical prediction that good guys can finish first.