Attention NAE Members
Starting June 30, 2023, login credentials have changed for improved security. For technical assistance, please contact us at 866-291-3932 or helpdesk@nas.edu. For all other inquiries, please contact our Membership Office at 202-334-2198 or NAEMember@nae.edu.
Click here to login if you're an NAE Member
Recover Your Account Information
Author: George Bugliarello, Larry G. Lehowicz, and Margaret N. Novack
The U.S. military is looking for munitions and other devices that can minimize the risk of injury or death to noncombatants. In many areas around the world, fields that once produced crops lie fallow, children are cautioned not to leave the road on their way to school, farmers caring for their herds dread bringing them in from the pasture, and a casual walk through a peaceful village reveals an unusual number of amputees. These seemingly unrelated circumstances have something in common-antipersonnel landmines, small, unobtrusive, inexpensive weapons that can remain active for a long time after hostilities have ended. In other places, such as the demilitarized zone between North and South Korea, where U.S. military forces are on constant alert in anticipation of an incursion by a numerically superior enemy, these same antipersonnel landmines enhance their security. Although the minefields would not stop an attack, they might buy enough time for defenders to prepare to fight back. Ideal weapons provide friendly forces with maximum flexibility and inflict maximum damage on the enemy-all without injuring innocent noncombatants. Antipersonnel landmines have these military benefits, but also have dire residual effects. The most obvious positive effect of landmines is that they kill or disable enemy personnel and damage their equipment. Antipersonnel landmines also serve several other, less obvious, functions. Minefields place an enemy in a vulnerable position that can be exploited by friendly forces. They can force an enemy to divide his forces, making him more vulnerable, and can interfere with command and control functions. Minefields can optimize the capabilities of other weapon systems, such as air-delivered precision weapons, by delaying enemy forces in an area where these systems can be used most effectively. Finally, landmines can protect friendly forces from enemy infiltration or attack, as they do in Korea. They provide significant economies of force in places where few troops or support weapons are available to defend an area. They protect small units of soldiers, alert defenders of enemy attack, control enemy movements, and prevent the enemy from disabling larger, more visible antitank mines, while inflicting casualties on enemy troops. U.S. military doctrine requires that minefields be mapped, marked, and eventually cleared. Many people in the military, however, remain ambivalent about using antipersonnel landmines because, despite these precautions, they have several disadvantages. The principal drawback, of course, is that they cannot discriminate between friends, foes, and noncombatants. In addition, they occasionally kill friendly personnel, especially in hastily marked minefields. Finally, if the tide of battle changes rapidly, mines emplaced during defensive missions can become an obstacle to the execution of rapid offensive maneuvers. In recent years, concerted efforts have been made to minimize the effects of all weapons on noncombatants-so-called collateral damage. Over time, landmines used by the United States and other countries with advanced military forces have become more complex, more effective, and easier to use. Advances in the 1970s led to the development of mines capable of destroying or deactivating themselves after a given time. Today, all antipersonnel landmines in U.S. stocks, with the exception of those intended for the defense of Korea, are self-destructing and/or self-deactivating. Other nations and nonstate forces, unfortunately, still use less technologically advanced landmines, which are inexpensive, easily obtainable, and highly effective. Most of these simple, nonself-destructing mines have been deployed with no thought to keeping track of their locations. As a result, millions of them strewn across old battlefields have killed or maimed thousands of innocent civilians in the last 25 years and impeded the resumption of normal activities after conflicts have ended. Humanitarian groups, international organizations, and many governments around the world have increasingly identified these residual hazards as a threat to innocents and demanded that all anti-personnel landmines be eliminated. The civilian casualties that occur every year are a major international concern that has been taken up by many nongovernmental groups. In 1997, the international outcry led to the Ottawa Convention, which was signed or agreed to by 139 nations, but thus far not by China, Israel, Russia, Turkey, the United States, and several other countries. The convention bans the use of all antipersonnel landmines, which are defined as mines that explode "by the presence, proximity, or contact of a person." The U.S. government has taken a number of steps to mitigate the adverse effects of antipersonnel landmines but has not signed the Ottawa Convention. In addition to using self-destructing/self-deactivating mines, the United States has destroyed a large num-ber of "dumb," nonself-destructing/self-deactivating mines and banned their export. The United States also assists in demining efforts and provides aid to victims of antipersonnel landmines. Most significantly, the U.S. government has established an aggressive program to identify technologies that could serve the same functions as antipersonnel landmines but would not have their negative residual effects. Antipersonnel landmines used by the United States, with the exception of those now warehoused for use in Korea, do not have long-term residual effects because they are self-destructing and/or self-deactivating. Nevertheless, they still are not Ottawa-compliant because they explode on contact with a person and do not discriminate between friend and foe. The Clinton administration indicated that the United States would be willing to sign the Ottawa Convention in 2006 if alternatives could be fielded to soldiers by that time. He instructed the U.S. Department of Defense (DOD) to begin developing alternatives that would serve similar functions, which are considered essential to U.S. combat capabilities. DOD responded by initiating a series of projects and studies-referred to as tracks-to identify alternatives. Track I, led by the U.S. Army, has investigated alternatives to the nonself-destructing mines used in Korea and proposed the production of a Remote Area-Denial Artillery Munition, or RADAM (a weapon that combines two existing mine systems into one munition). Track II, led by the Defense Advanced Research Projects Agency (DARPA), is focused on long-term alternatives that would prevent enemy access to an area. Track III, which overlaps Tracks I and II, is led directly by the staff of the Secretary of Defense. The focus of Track III is on new or existing technologies that would provide capabilities equivalent to those of antipersonnel landmines when used alone or in mixed systems with antitank mines. As part of Track III, in response to a mandate from Congress, DOD asked the National Research Council (NRC) to empanel a committee to identify potential alternative technologies, tactics, and operations that could be available by 2006, the date the United States could sign the Ottawa Convention. Although the Ottawa Convention was a prime context for the NRC study, the study was limited to technological and operational issues and was not expected to comment on the need for, or the morality of, antipersonnel landmines or whether the United States should accede to the Convention. The NRC committee soon realized, however, that the overarching issues are enormously complex, beginning with the question of what makes a weapon more or less humanitarian. Eliminating antipersonnel landmines may not always lead to more "humanitarian" battlefields. Unexploded ammunition, more powerful ammunition with a larger lethal radius than antipersonnel landmines, more airborne precision munitions, and other kinds of weapons used to compensate for the loss of antipersonnel landmines can also cause civilian casualties. There is also a possibility that the search for alternatives could lead to an arms race in a category of weapons that has, up to now, received little attention in terms of technological sophistication. The consequences of escalating costs, as well as of the temptation of some belligerents under the stress of conflict to resort to the use of "dumb" antipersonnel landmines, are hard to assess. The study was conducted at an interesting historical juncture. The United States is at peace, and, at the same time, the number of new technologies with military possibilities is unprecedented. The so-called "revolution in military affairs" now envisioned could propel the U.S. military into an information-age capability on the battlefield. The convergence of these factors presents U.S. armed forces with a unique window of opportunity to develop new conceptions and new systems in a time of peace. The central conclusion of the NRC study is that new systems that incorporate sophisticated sensing and communications technology could eventually be developed that would enhance the capability of U.S. forces. These new weapon systems would respond to humanitarian concerns by leaving the decision of whether or not to explode a munition to a person (a "man-in-the-loop") who could first determine whether or not an intruder in a minefield, or any designated area, was an enemy combatant. The deterrent function of antipersonnel landmines could be provided by other kinds of devices, thus eliminating the danger created by mines left in the field after a military action. However, many advances in technology will be necessary for the development of alternatives, especially in the areas of munitions, information technology, and communications. The following examples suggest where these technologies might take us: