WILLIAM R. HEWLETT
1913–2001
Elected in 1965
"Electronics engineer."

BY ROBERT J. SCULLY AND MARLAN O. SCULLY
SUBMITTED BY THE NAE HOME SECRETARY

William Redington Hewlett passed away January 12, 2001, at age 87. The Silicon Valley miracle was in large part fostered by him and David Packard (NAE 1971). Indeed, the ideas and ideals of the Hewlett-Packard Corporation set a high standard for the industry.

During his life Hewlett was recognized by his profession, his country, and his peers as the hero that he was. He was president of the (now) Institute of Electrical and Electronics Engineers in 1954 and was elected to membership in the National Academy of Engineering in 1965 and the National Academy of Sciences in 1977. President Ronald Reagan awarded him the National Medal of Science in 1983 for “his pioneering accomplishments in the creation and manufacturing of electronics and semiconductor devices and electronic test instruments.” In 1987 he was awarded the Degree of Uncommon Man by Stanford University, its most prestigious award granted to alumni.

William was born May 20, 1913, in Ann Arbor, where his father, Albion W. Hewlett, was a doctor who taught medicine at the University of Michigan. When Will was 3, his dad moved the family back to their native California to teach at

Adapted with permission from Biographical Memoirs of the National Academy of Sciences, available online at www.nasonline.org/memoirs.
Stanford University. Will, who had dyslexia, attended the prep school Lowell High. He excelled in math and the sciences, but had problems with everything else. He dealt with his reading disability by learning to memorize and repeat subject matter over and over to himself. Life’s future obstacles would similarly be dealt with; they were intriguing challenges begging a solution. From his early work on electronic oscillators to the development of the HP pocket calculator, Will Hewlett was a problem-solving pathfinder.

At an early age he began his engineering career the way many others do: blowing up things. His preferred method was stuffing doorknobs full of explosive. Aside from this hobby, he was a good and well-behaved kid. He developed a love for the outdoors as an avid mountain climber with a penchant for camping.

When Will was 12, his father died of a brain tumor. Deeply troubled by this loss, the boy sought refuge in the school science lab and solace in the mountains. To help the family cope with the tragedy Will and his sister Louise were moved to France for a year. While there he was tutored by his mother and grandmother.

High school would not prove him to be an outstanding student. Nevertheless he had his sights set on attending Stanford University. The principal initially refused to recommend him to the university, until she learned that his father had been Albion Hewlett. The surprised principal exclaimed, “He was the best student I ever had.” The letter of recommendation that followed allowed Hewlett to open the doors to a new world of technology.

He received his BA (1934) from Stanford and MS (1936) from the Massachusetts Institute of Technology (MIT), both in electrical engineering, and in 1939 he was awarded the degree of electrical engineer from Stanford.

He immediately formed his own company. He had become close friends with David Packard while an undergraduate at Stanford. They had many things in common, apart from the social scene. Both liked to blow up things. Both loved outdoor activities—hunting, fishing, skiing, and mountain climbing.
were the early trademarks of the future fathers of Silicon Valley. And both had a passion to discover, develop, and invent.

So it was that Hewlett-Packard came into being in 1939: in their garage with an investment capital of $538. The lingering Depression didn’t make things easy for the new company, but it did push the two partners to perform. Hewlett recalled, “In the beginning we did anything to bring in a nickel. We had a bowling lane foul line indicator. We had a thing that would make a urinal flush automatically as soon as a guy came in front of it. We had a shock machine to make people lose weight.”

Over the next two years Hewlett-Packard inventions became more practical. One notable early achievement was the development of an audio frequency oscillator. At the time electronics was a new field, half science and half art. The resistance-tuned oscillator was a new idea that had been stymied by inherent stability problems. Hewlett came up with an ingenious solution: he invented a variable frequency oscillator that was stabilized by a small light bulb. This simple addition to the circuit made the device an inexpensive, reliable instrument. They called it the 200A, because calling it, say, 1A, might reflect inexperience to potential customers.

The new product was used to calibrate the sophisticated sound systems of the large studios. Walt Disney purchased eight for use in the film Fantasia. The success of these and other devices helped set the stage for Hewlett-Packard’s future and presented missions for research and development. Although they were pioneers in new research, many of the technologies they fielded were testing and calibrating equipment for technological equipment already in existence.

The spring of 1941 saw the young company thrust into World War II. Will had been a ROTC cadet in college and was called to active duty. He originally worked in the Aviation Ordnance Department; it wasn’t a good use of his technical skills but rather a result of his ROTC training. Packard, meanwhile, was making contacts in the defense sector, and his technological breakthroughs in the young company were earning him friends in high places. As such, he wrote to Colonel Roger
B. Colton of the Signal Corps and explained the benefits of having Hewlett transferred there. Thus Will was moved to the Signal Corps at Fort Monmouth, where he put his electrical engineering skills to good use. But not for long: that summer Hewlett-Packard went from a partnership to a corporation and the government now recognized Hewlett as an essential employee. He was released back to Palo Alto for a couple of months, only to be called back to Washington after Pearl Harbor.

Hewlett had more energy and ambition than the army required. In the nation’s capital he learned, among other things, the bureaucratic ways there. He was unaccustomed to working less than 12 hours a day, but was forced to as the bureaucrats around him insisted on locking the safe at six o’clock each night, so that’s when he had to hand over his documents and call it a day. Although he found this frustrating, his new wife, Flora (née Lamson), a biochemist whom he married in 1939, was delighted. She accepted the fact that her husband spent most of his time away from home, but was becoming quite busy herself, taking care of their growing number of children.

Will was transferred to a staff job, working for General James E. Wharton in the new products division, and late in the war he was sent to the Philippines, where he helped with assimilating new technologies into the frontline units of the military.

At about the time of the Japanese surrender he was given an intelligence assignment that took him, with a team, to Japan. He suspected that part of the purpose was to discover what the country had been doing with the atomic bomb. He met a man named Yagi, the civilian head of research and development. Yagi was helpful and knew the right directions in which to steer the investigators. He also explained to Hewlett, who recalled that the Japanese government had announced the development of a “death ray,” that it was nonsense but that he had to appear to work on developing one anyway.

Hewlett found the Japanese electronics to be underdeveloped and primitive. Contrary to popular opinion, there was little if any cooperation between the Japanese army and
navy or between the government and the civilian research and
development community. Hewlett observed that the Japanese
navy had been around the world for 10 years before the war;
they knew what was out there and what the country was get-
ting into. On the other hand the army had spent the previous
10 years occupying Manchuria in China, where they met ill-
equipped, untrained forces. Will noted the result was that the
army believed it could defeat the world. It was a fitting insight
for the lieutenant colonel on which to end a military career.

He returned to Palo Alto in 1945. If he did not get shell shock
in combat, he certainly got a shock when he came home. The
company was no longer garage-based but a thriving industry
of over 200 employees and it was growing at 100 percent per
year. And as if David hadn’t done enough, Will learned that
his friend had thought it unfair to stay home and make more
money than his buddy who went off to war, so he kept his
salary lower than Will’s service pay.

Hewlett was named vice president. As a leader he saw
humanity as a raw resource of power that could grow only
when left alone and encouraged from the sidelines. As such
he brought a unique style of management to his company.
Like his designs, it is simple and straightforward. Based on
compassion, trust, and loyalty, it is backed by enthusiastic and
loyal employees who extend the frontiers of technology while
adding economic wealth to the nation. Will didn’t manage by
directive; his style was “management by walking around.”

Will himself best illustrated the Hewlett-Packard way. The
company had earned a reputation for making quality printers,
but a quality problem with one of its models exposed HP to
warranty problems in the tens of millions of dollars. When the
serious situation was described to the board, Hewlett listened
and finally asked what had been learned from the experience.
He then simply said, “Make sure your number one responsi-
bility is to take care of our customers.”

As the company expanded to become the backbone of
Silicon Valley, Will seems to have realized that his role was
changing. He was now one of the richest men in the world,
and, together with Flora, turned his attention to philanthropy.
He was particularly interested in the fields of medicine and education. He served as director of the Drug Abuse Council in Washington, DC (1972–78) and on the boards of numerous colleges and hospitals.

In 1995 he donated $70 million to the Public Policy Institute of California, which studies economic, social, and political issues facing the state. Silicon Valley had brought enormous growth and prosperity to northern California, but with it came challenges such as overpopulation, massive immigration, and destruction of once plentiful forests. William contributed to the conglomerate he had laid the foundation for with compassion and understanding—and with the hope that the next “Silicon Valley” would be a more perfect organization, not just a group of for-profit companies but a society of people from all walks of life who would live and work together with dignity and respect.

Will retired from HP in 1987 and in the late 1990s experienced a series of debilitating strokes that left him in a wheelchair. But the HP Way remained alive and in full force. William Hewlett’s influence did not end on January 12, 2001. His enduring and legendary contributions continue to enrich us all.

Flora died of cancer in 1977 at age 62. The following year Will married Rosemary Bradford; she died in 2010. Bill is survived by his children Eleanor Hewlett Gimon (Jean-Paul), Walter, William, James, and Mary Hewlett Jaffe; 5 stepchildren; and 12 grandchildren.